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Abstract

I show that solutions of the SU(∞)Toda field equation generating a fixed Einstein–Weyl space are
governed by a linear equation on the Einstein–Weyl space. From this, obstructions to the existence
of Toda solutions generating a given Einstein–Weyl space are found. I also give a classification
of Einstein–Weyl spaces arising from the Toda equation in more than one way. This classification
coincides with a class of spaces found by Ward and hence clarifies some of their properties. I end
by discussing the simplest examples. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [16], Ward showed that solutionsu(x, y, z) of the SU(∞) Toda field equationuxx +
uyy + (eu)zz = 0 may be used to define three-dimensional Einstein–Weyl spaces. A Weyl
space is a conformal manifoldM together with a compatible torsion-free connection (called
aWeyl connection) and it is said to beEinstein–Weyliff the symmetric trace-free part of the
Ricci tensor of this connection vanishes [7]. Weyl connections on a conformal manifold cor-
respond bijectively to covariant derivatives (called Weyl derivatives) on the density line bun-
dleL1, which is the oriented real line bundle whosenth power is|3nTM|, wheren = dimM.

A Weyl space may be described by a choice of compatible Riemannian metricg and
the connection 1-formω of the Weyl derivative onL1 relative to the trivialisation ofL1

determined by the volume form of the metric (so that, for the induced Weyl connection,
Dg = −2ω ⊗ g). In these terms, the Einstein–Weyl space defined by the solutionu of the
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Toda equation may be written as

g = eu(dx2 + dy2)+ dz2, ω = −uz dz. (1.1)

The Toda equation is a nonlinear integrable system, but very few solutions are known ex-
plicitly [1,3,5,13,14]. Ward found an implicit procedure for generating a family of solutions
from axially symmetric harmonic functionsV . The Einstein–Weyl spaces determined by
these implicit solutions are nevertheless completely explicit (in terms ofV ) and Ward sug-
gested that “. . . further investigation is needed to clarify the nature and properties of these
family of spaces” [16].

In this paper, I show that these Einstein–Weyl spaces are precisely the Einstein–Weyl
spaces which can be written in the form (1.1) in at least two inequivalent ways. The key
observation is that the solutions of the Toda equation on a fixed Einstein–Weyl background
are essentially given by solutions of a linear system in this Weyl geometry. More precisely,
the solutions of this linear system, the “Toda structures”, correspond to solutions of the
Toda equation on the Einstein–Weyl space up to changes of isothermal coordinates(x, y)

and translation ofz. As a consequence, I show that an Einstein–Weyl space admits at most a
four-dimensional space of compatible Toda structures, with equality iff the Einstein–Weyl
space is Einstein. Furthermore, obstructions to the existence of Toda structures on a given
Einstein–Weyl space are found. These obstructions are sufficient to establish which of the
local forms of compact Einstein–Weyl spaces (found in [12]) admit Toda structures.

In Section 3, I prove that the existence of more than one Toda structure on an Einstein–Weyl
space is equivalent to the existence of a conformal vector field of a special type, which I
will call an “axial symmetry”. This fact is used in Section 4 to classify the resulting spaces.
The simplest examples are then discussed in Section 5.

I work throughout with the density bundlesLw(w ∈ R). A conformal structure may then
be defined as anL2-valued metric, so that the conformal inner product of vector fieldsX, Y

is 〈X, Y 〉 ∈ C∞(M,L2). Compatible Riemannian metrics correspond to trivialisations
of L1, and such a trivialisation is often called alength scaleor gauge. When tensoring
with a density line bundle, I shall omit the tensor product sign, and sections ofLw−1TM
or Lw+1T ∗M are called vector fields or 1-forms of weightw, respectively. The Hodge
star operator on an oriented conformal 3-manifold identifiesLw with Lw+333T ∗M and
Lw+1T ∗M with Lw+232T ∗M and it will be taken to have square−id (for further details
see [2,4]). The results in this paper are local in character, and so, where necessary, vector
fields are taken to be nonvanishing and manifolds simply connected.

2. Toda structures on Einstein–Weyl spaces

The Einstein–Weyl spaces arising from the Toda Ansatz (1.1) have been characterised
by Tod [13] as those which admit a shear-free twist-free geodesic congruence. Ifχ ∈
C∞(M,L−1TM) denotes the weightless unit vector field tangent to this congruence (an
oriented foliation with one-dimensional leaves), then this means that

Dχ = τ(id − 〈χ, .〉 ⊗ χ), (2.1)



154 D.M.J. Calderbank / Journal of Geometry and Physics 36 (2000) 152–162

whereD is the Weyl connection,τ a section ofL−1 and 〈χ, .〉 denotes the weightless
1-form dual toχ with respect to the conformal structure. In (1.1), the congruence generated
by ∂/∂z has this property and one finds that 2τ 〈χ, .〉 = −uz dz. Hence the Weyl derivative
D−2τ 〈χ, .〉 is induced by the Levi–Civita connection ofg and so the metricg is canonically
determined, up to a constant multiple, by the Weyl structure and the congruence [2,13]. I will
denote byµ the trivialisation ofL1 corresponding tog and refer to this gaugeµ (unique up to
a constant) as theLeBrun–Wardgauge [10,16]. The congruenceχ determines (in principle)
the solution of the Toda equation up to the choice of isothermal coordinates(x, y) and affine
changes ofz. Fixing the LeBrun–Ward gaugeµ determinesz up to translation. In (1.1),
τ = −1

2uzµ
−1, χ = µ−1∂/∂z and〈χ, .〉 = µdz.

Eq. (2.1) forχ is apparently nonlinear, but it actually becomes linear as an equation for
the weight12 vector fieldX = µ1/2χ : explicitly,DX = σ id, for some sectionσ = µ1/2τ

of L−1/2. Conversely, ifDX is a multiple of the identity, thenχ = X /|X | is a shear-free
twist-free geodesic congruence andµ = |X |2 is the LeBrun–Ward gauge.

Although this observation is trivial, it is the key idea behind the results of this paper,
and so I should explain its origin. In [10], LeBrun gave a characterisation of the Toda
Einstein–Weyl spaces in terms ofminitwistor theory[7]. The space of oriented geodesics
in a three-dimensional Einstein–Weyl space is a complex surfaceS containing rational
curves (“minitwistor lines”) with normal bundleO(2), and shear-free geodesic congruences
correspond to divisors inS of degree 2 on each minitwistor line. LeBrun noticed that if the
congruence is also twist-free, then the corresponding divisor is actually a divisor forK

−1/2
S ,

whereKS is the canonical bundle ofS. After incorporating the choice of homothety factor
of the LeBrun–Ward gauge, Toda structures on a fixed Einstein–Weyl space correspond to
holomorphic sections ofK−1/2

S . This immediately suggests that a linear equation is involved,

and by applying the Penrose transform following Tsai [15], one finds that sections ofK
−1/2
S

correspond to weight12 vector fields with trace-like derivative. It is then not hard to guess
the relationship between such a vector field andχ .

Definition 2.1. A Toda structureon a three-dimensional Einstein–Weyl space is a shear-free
twist-free geodesic congruence together with a choice of homothety factor for the corre-
sponding LeBrun–Ward gauge.

A Toda structure gives (perhaps only implicitly) a solution of the Toda equation up to
changes of isothermal coordinates(x, y) and translation ofz.

Proposition 2.2. Toda structures correspond to solutions of the following closed linear
system for a nonzero weight1

2 vector fieldX and a−1
2 densityσ :

DX = σ id, (2.2)

Dσ = −1
2F

D(X , .)− 1
6scalD〈X , .〉, (2.3)

where D is the Weyl connection, FD its curvature onL1, andscalD its scalar curvature,
which is a section ofL−2. Hence Toda structures are parallel sections with respect to a
natural connection onL−1/2TM ⊕ L−1/2.
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Proof. Eq. (2.2) has already been established. Differentiating it and skew-symmetrising
yields RD,1/2X,Y X = (DXσ)Y − (DY σ)X, whereRD,1/2 denotes the curvature ofD on

L−1/2TM. SinceD is Einstein–Weyl,

R
D,1/2
X,Y =−1

6scalD〈X, .〉4Y+1
2F

D(X, .)4 Y−1
2F

D(Y, .)4X+1
2F

D(X, Y )id, (2.4)

where (for any 1-formα and vector fieldsX, Y ) α4X(Y) = α(Y )X−〈X, Y 〉[α. Eq. (2.3)
now follows by taking a trace. �

Corollary 2.3. An Einstein–Weyl space admits at most a four-dimensional space of Toda
structures, and hence at most a three-parameter family of shear-free twist-free geodesic
congruences.

By computing the curvature of the connection

D(X , σ ) = (DX − σ id, Dσ + 1
2F

D(X , .)+ 1
6scalD〈X , .〉)

on L−1/2TM ⊕ L−1/2, one can find obstructions to the existence of Toda structures on
Einstein–Weyl spaces. In particular, substituting Eq. (2.3) back intoR

D,1/2
X,Y X = (DXσ)Y−

(DY σ)X, and using (2.4), yields

FD(X, Y )X + 〈X,X 〉FD(Y )− 〈Y,X 〉FD(X) = 0,

whereFD(X) = [FD(X, .). This condition onX is simply that〈X , .〉 ∧ FD = 0, or
equivalently〈X , ∗FD〉 = 0.

Proposition 2.4. The congruence associated to a Toda structure on an Einstein–Weyl space
(M,D) must be orthogonal to∗FD. Hence M admits a four-dimensional space of Toda
structures if and only ifFD = 0, i.e., the Einstein–Weyl space is Einstein.

The sufficiency ofFD = 0 follows by verifying that on each of the three Einstein spaces,
the Toda structures (given by Tod [13]) do indeed form a four-parameter family (where one
of the parameters is essentially the homothety factor of the Einstein metric).

The remaining curvature obstructions are obtained by differentiating Eq. (2.3) and skew-
symmetrising. The resulting constraint on(X , σ ) is

(DXF
D)(Y,X )− (DYF

D)(X,X )+ 1
3(〈X,X 〉DY scalD − 〈Y,X 〉DX scalD)

= FD(X, Y )σ.

The Cotton–York curvature of the underlying conformal structure may be defined by
CX,YZ = (DXF

D)(Y, Z) − (DYF
D)(X,Z) + 1

6(〈X,Z〉DY scalD − 〈Y,Z〉DX scalD).
Hence the above constraint relatesC to D scalD andFD. Since it is skew inX, Y , it is
convenient to apply the star operator to obtain

Y(X , .)+ 1
6(∗D scalD)(X , .) = σ ∗ FD,

whereY(U, V ) = 〈∗(C.,.U), V 〉 (which is well known to define a symmetric trace-free
tensor). One simple consequence of this is the following refinement of Proposition 2.4.
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Proposition 2.5. The congruence associated to a Toda structure on an Einstein–Weyl space
(M,D)must be orthogonal to∗FD and null with respect to the Cotton–York tensorY.Hence
M can only admit a Toda structure ifY is indefinite on the orthogonal complement of∗FD.

To see that this obstruction is nontrivial, I will apply it in the case that the Weyl structure is
given by(g, ω)withω dual to a Killing field ofg. On a compact Einstein–Weyl space, there
is a unique compatible metric (up to a constant) with this property, and the Einstein–Weyl
structures satisfying this condition have been classified [12]. In order to avoid a case-by-case
computation ofY, I will derive a general formula.

Proposition 2.6. SupposeD = Dg + ω is Einstein–Weyl withω dual to a Killing field of
g. Then
1. DgXF

D = 1
3scalD ω ∧ 〈X, .〉 and so∗FD is also dual to a Killing field of g.

2. Y(U, V ) = 3
2(ω(U)(∗FD)(V )+ ω(V )(∗FD)(U))− 〈ω, ∗FD〉〈U,V 〉.

Proof. SinceFD = dω is closed andDgω is skew,DgXF
D(Y,Z) = −2(RgY,Zω)(X). The

usual formulae for the Ricci tensor ofg [4,12] yield the first result by direct calculation.
Next observe thatD scalD = Dg scalD−2 scalDωand thatDXFD(Y,Z) = D

g
XF

D(Y,Z)

− FD(ω 4X(Y), Z)− FD(Y, ω 4X(Z))− 2ω(X)FD(Y,Z). Also, by [4],Dg scalD =
3Dg|ω|2 andDgω = 1

2F
D, which leads to the following formula forC:

CX,Y = −ω(X)FD(Y, .)+ ω(Y )FD(X, .)+ 3
2F

D([ω,X)〈Y, .〉
−3

2F
D([ω, Y )〈X, .〉 + 2FD(X, Y )ω.

Applying the star operator gives the second formula. �

Corollary 2.7. SupposeD = Dg +ω is Einstein–Weyl on M withω dual to a Killing field
of g. Then(M,D) cannot admit a Toda structure unless∗FD is orthogonal toω.

Examining the explicit solutions in [12], one can easily determine for which spaces this
holds: in terms of the parameters in Case 1 of [11] (which is the generic case), this condition
is abc= 0. In particular, among the Berger spheres (given byb = ±c anda 6= 0), only the
round sphere is Toda, verifying (in another way) the final remarks of [13].

3. Toda structures and symmetries

I turn now to the question: which Einstein–Weyl spaces admit more than a one-dimensional
family of Toda structures? In the minitwistor space picture, two Toda structures correspond
to two holomorphic sections ofK−1/2

S . Their Wronskian, being a section ofK−1
S ⊗T ∗S ∼=

T S, is a holomorphic vector field onS. This symmetry of the minitwistor space induces a
symmetry of the Einstein–Weyl space.

Proposition 3.1. SupposeX1 andX2 are the weight12 vector fields of two Toda structures.
ThenK = ∗(X1 ∧X2) is a divergence-free twist-free conformal vector field preserving the
Weyl connection.
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Proof. DifferentiatingK givesDK = ∗(σ1X2−σ2X1) = 1
2dDK, whereDXi = σi id. This

is skew and soK is a divergence-free conformal vector field. Also〈K, .〉∧dDK = 0 (since
K is orthogonal toX1 andX2), soK is twist-free. Finally, to show thatK preserves the Weyl
connection, it suffices to show that the Lie derivativeLKD = 1

3d tr DK + FD(K, .) of the
Weyl derivative onL1 vanishes. Now∗FD is orthogonal toX1 andX2, soFD(K, .) = 0,
and trDK = 0 sinceK is divergence-free. �

Remarkably, the necessary condition of this proposition is also sufficient.

Theorem 3.2. An Einstein–Weyl space has a two-dimensional family of Toda structures if
and only if it admits a (nonzero) divergence-free, twist-free conformal vector field preserving
the Weyl connection.

The necessity is Proposition 3.1. For the converse, suppose thatK is a divergence-free,
twist-free conformal vector field preserving the Weyl connectionD of an Einstein–Weyl
space. Since the result is local, assumeK is nonvanishing. ThenDK = α 4 K for some
1-formα with α(K) = 0. Furthermore, ifD|K| is the Weyl derivative corresponding to the
trivialisation ofL1 given by the length ofK, thenD = D|K| + α, and soLKα = 0. Next
note that sinceK is twist-free, shear-free and divergence-free, it is surface-orthogonal and
the integral surfaces ofK⊥ are totally geodesic. The above theorem is now an immediate
consequence of the following proposition.

Proposition 3.3. Given D, K, α as above, the covariant derivative defined byD∗
XX =

DXX − α(X )X is flat on the bundle of vector fields of weight1
2 orthogonal to K.

Proof. The curvature ofD∗ is

R∗
X,YX = (−1

6scalD X4Y+1
2F

D(X, .)4 Y − 1
2F

D(Y, .)4X + 1
2F

D(X, Y )id)(X )

−((DXα)(X )+ α(X)α(X ))Y + ((DYα)(X )+ α(Y )α(X ))X.

Now sinceK is a conformal vector field preservingD, DX(DK) = RDX,K . Also DK =
α 4 K, soDX(DK) = (DXα + α(X)α) 4 K. Contracting withK and using the fact that
α(K) = 0 andLKα = 0 (i.e.(DXα)(K) = −α(DXK) = 〈K,X〉|α|2) gives

DXα + α(X)α = 1
2F

D(X)− 1
6scalD X⊥ + |α|2X‖,

whereX‖ andX⊥ denote the components ofX parallel and orthogonal toK. Substituting
this into the formula forR∗ gives, forX orthogonal toK,

R∗
X,YX = 1

2F
D(X, Y )X − 1

2〈X , Y 〉[FD(X, .)+ 1
2〈X , X〉[FD(Y, .).

This vanishes for allX, Y becauseFD(K, .) = 0 andX is orthogonal toK, so〈X , .〉∧FD =
0. �

The parallel sections ofD∗ satisfyDX = α(X )id and hence give a two-dimensional
family of Toda structures. A consequence of this theorem is the following converse to
Corollary 2.7.
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Proposition 3.4. SupposeD = Dg + ω is Einstein–Weyl on M withω dual to a Killing
field of g and that∗FD is orthogonal toω. Then∗FD is dual to a divergence-free twist-free
conformal vector field preserving the Weyl connection, and so M admits a two-dimensional
family of Toda structures.

Proof. LetK = µ3
g〈∗FD, .〉 be the vector field dual to∗FD with respect tog, whereµg

is the trivialisation ofL1 determined byg. Now by Proposition 2.6,DgK = −1
3scalD µ3

g∗ω
(here ∗ω is viewed as a skew-endomorphism). SinceD = Dg + ω, DK =
−1

3scalD µ3
g ∗ ω + ω 4K + ω(K)id. Now if ∗FD is orthogonal toω thenω(K) = 0 and

−1
3scalD µ3

g ∗ ω = αg 4 K for some 1-formαg. HenceK is a divergence-free twist-free
conformal vector field, and it preserves the Weyl connection sinceFD(K, .) = 0 by
definition. �

This result could also be easily established by considering each case in turn (most of
which are straightforward). These spaces will feature in Section 5.

4. Einstein–Weyl spaces with an axial symmetry

In this section, I will find explicitly all the Einstein–Weyl spaces admitting a two-
dimensional family of Toda structures. According to Section 3, this is equivalent to clas-
sifying the Einstein–Weyl spaces admitting a divergence-free twist-free conformal vector
fieldK preserving the Weyl connection. I will say that these spaces are Einstein–Weylwith
an axial symmetry. On such a space, there is a two-dimensional family of Toda structures
given by the weight12 vector fieldsX orthogonal toK and satisfyingDX = α(X )id,
whereDK = α4K. In particular,DKX = α(X )K = DXK, soLKX = 0 and these Toda
structures areK-invariant.

Pick one such Toda structureX . Thenα(X /|X |) is the sectionτ of L−1 given by this
Toda structure, and it is only identically zero ifX is a parallel vector field (which can
only happen on flat space). As shown by LeBrun [10],τ is a solution of the Abelian
monopole equation and applying the Jones and Tod [8] construction to this solution gives
a hyperKähler metric with a Killing fieldX [1,5]. The Toda structure isK-invariant, soK
lifts to give an additional Killing field of the hyperKähler metric. SinceK andX commute,
some linear combination must be a triholomorphic Killing field and hence the hyperKähler
metric arises via the Gibbons–Hawking Ansatz [6] from a harmonic function onR

3. This
harmonic function is invariant under a Killing field ofR3 and, sinceK is twist-free, one
readily finds that this Killing field must also be twist-free [2]. Hence it is a rotational
vector field, and the harmonic function is axially symmetric. This proves the following
result.

Theorem 4.1. Let M be Einstein–Weyl with an axial symmetry. Then if M is not flat
(with translational symmetry), it is one of Ward’s Einstein–Weyl spaces constructed from
an axially symmetric harmonic function onR3 [16], and is therefore given explicitly
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by

g = (V 2
ρ + V 2

η )(dρ
2 + dη2)+ dψ2, ω = 2VρVη dη + (V 2

ρ − V 2
η )dρ

ρ(V 2
ρ + V 2

η )
,

where(ρVρ)ρ + ρVηη = 0.

Note that the monopole onR3 isVη: the choice of the integralV of Vη corresponds to the
choice of the quotient of the Gibbons–Hawking metric [2]. This freedom involves adding
multiples of logρ to V . Note also that ifV = logρ, then the monopoleVη degenerates, the
Einstein–Weyl space above isR3 itself, and∂/∂ψ is the axial symmetry.

The equation forV may be viewed as an equation onH2, by thinking ofV as being in the
kernel of the conformal Laplacian onR3\R, which is conformal toS1×H2. More explicitly,
if v = ρ1/2V , thenvρρ + vηη = −1

4ρ
−2v, and sov is an eigenfunction of the Laplacian

with eigenvalue1
8scalH2 on the hyperbolic 2-spaceH2 with metric(dρ2 + dη2)/ρ2.

The original choice of Toda structureX may be found by rescalingg by ρ2 to obtain the
Weyl structure in the LeBrun–Ward gauge [2]:

gLW = ρ2(V 2
ρ+V 2

η )(dρ
2+dη2)+ρ2 dψ2 = ρ2(dV 2 + dψ2)+ (ρVη dρ − ρVρ dη)2,

ωLW = − 2Vη
ρ2(V 2

ρ + V 2
η )
(ρVη dρ − ρVρ dη).

The 1-formρVη dρ − ρVρ dη is locally exact, and may be integrated explicitly by writing
V = Uη with U axially symmetric and harmonic onR3, so thatz = −ρUρ .

The other Toda structures come from the radial congruences onR
3 centred about points on

the axis of symmetry. A more democratic approach involves the relationship between these
examples and Joyce’s [9] construction of torus symmetric scalar flat Kähler metrics from
a linear equation on hyperbolic 2-space. Indeed this linear equation, given in Proposition
3.2.1 of [9], is the Cauchy–Riemann form of the equation forV , tensored trivially with
R

2. Ignoring theR2 tensor factor, simply takex1 = ρ, x2 = η, φ1 = ρVη, φ2 = −ρVρ
to see that Joyce’s equation is solved by axially symmetric harmonic functions. However,
the advantage of his approach is that the pair(ρVη,−ρVρ) is identified with a section8
of a square root of the canonical bundle ofH2 satisfying an invariant equation. Now the
Einstein–Weyl structure may be written as

g = |8|2gH2 + dψ2, ω = 82

|8|2

and so it does not actually depend upon the choice of coordinates(ρ, η) identifyingH2

with the upper-half plane. Such an identification is given by the choice of a point at infinity
on the hyperbolic disc and each point in this circle gives a Toda congruence.

Two solutions of Joyce’s equation generate a scalar-flat Kähler metric with two Killing
fields, and Ward’s Einstein–Weyl spaces arise as the quotients by each of these Killing
fields. Joyce finds the solutionV = logρ (which generatesR3) and superposes it with its
image under isometries of hyperbolic 2-space (where these isometries are applied to8). In
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this way he obtains torus symmetric self-dual conformal structures onkCP 2, generalising
(for k ≥ 4) the torus symmetric examples obtained from the hyperbolic Ansatz of LeBrun
[10].

5. Examples

The simplest axially symmetric harmonic functions onR3 are the constant functions
and the fundamental solutions. The most trivial solutionVη = 0, V = logρ yieldsR3. If
Vη = b or Vη = c/(ρ2 + η2)1/2, then the Gibbons–Hawking metric isR4 and the triholo-
morphic Killing field is an infinitesimal translation or self-dual rotation, respectively. Hence
the Einstein–Weyl spaces obtained are the quotients ofR

4 by Killing fields (infinitesimal
transrotations or rotations) given in [11].

To obtain more complicated examples, one can take linear combinations of fundamental
solutions and constant solutions. In this way, one can find the Einstein–Weyl quotients of
the Taub–NUT and Eguchi–Hanson metrics, more or less by direct substitution, although
more manageable expressions are obtained after transforming the(ρ, η) coordinates.

The Taub–NUT solutions are given byV = alogρ + bη + clog(η + (ρ2 + η2)1/2)/ρ

and it is convenient to setρ = r cosθ, η = r sinθ so thatρVη = (br + c) cosθ and
ρVρ = a − c sinθ . Then

gLW = ((br + c)2 cos2θ + (a − c sinθ)2)(dr2 + r2 dθ2)+ r2 cos2θ dψ2,

ωLW = − 2(br + c)

r((br + c)2 cos2θ + (a − c sinθ)2)
d(−ar sinθ + 1

2br2 cos2θ + cr).

Note thatbc = 0 gives the quotients ofR4 mentioned briefly above.
The Eguchi–Hanson solutions are obtained from

V = alogρ + 1
2

(
b + c

ε

)
log
η − ε + (ρ2 + (η − ε)2)1/2

ρ

+1
2

(
b − c

ε

)
log
η + ε + (ρ2 + (η + ε)2)1/2

ρ
,

whereε2 = ±1 (without loss of generality). Whenε2 = −1, this is the potential for an
axially symmetric circle of charge, whileε2 = +1 corresponds to two point sources on
the axis of symmetry. These cases are sometimes referred to as Eguchi–Hanson I and II,
respectively. The former is always incomplete, but its Einstein–Weyl quotients are perhaps
more interesting than those of Eguchi–Hanson II.

Coordinates adapted to these geometries are obtained viaρ = (R2 − ε2)1/2 sinθ and
η = R cosθ so that

ρVη = (bR+ c cosθ)(R2 − ε2)1/2 sinθ

R2 − ε2 cos2θ
,

ρVρ = a(R2 − ε2 cos2θ)− b(R2 − ε2) cosθ + cRsin2θ

R2 − ε2 cos2θ
.
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The Toda structure is now given by

gLW = ((a cosθ − b)2(R2 − ε2)+ (aR+ c)2 sin2θ)

(
dR2

R2 − ε2
+ dθ2

)

+(R2 − ε2) sin2θ dψ2,

ωLW = − 2(bR+ c cosθ)

(a cosθ − b)2(R2 − ε2)+ (aR+ c)2 sin2θ
d(−aRcosθ + bR− c cosθ).

The family given bya = 0, ε2 = −1 also arises as a quotient of the scalar flat Kähler
metric onS2 ×H2. If we write this as

g = dR2

R2 + 1
+ (R2 + 1)ds2 + dθ2 + sin2θ dφ2,

thenK = (b∂/∂s) + (c∂/∂φ) is a Killing field. Coordinates adapted toK are given by
χ = bs+ cφ, ψ = bφ − cs so thatK is a multiple of∂/∂χ and the quotient metric
g − g(K, .)/g(K,K) is

dR2

R2 + 1
+ dθ2 + (R2 + 1) sin2θ

b2(R2 + 1)+ c2 sin2θ
dψ2.

This is the same conformal structure as above, and one readily checks that the Weyl structures
also agree. NowS2 ×H2 is conformal toR4 \R and so these Weyl structures are globally
defined onS3 for b 6= 0 (since∂/∂s is a dilation). Hence, as remarked in [2], these quotients
of R4 by dilation plus planar rotation are Toda (although the congruences are not globally
defined onS3). Additionally, the calculations of this section verify explicitly that they are
Einstein–Weyl with an axial symmetry, in accordance with Proposition 3.4, and arise from
the Eguchi–Hanson I metrics.
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